Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/792 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Feasibility of superconductivity in semiconductor superlatices
Author: Walsh, Kenneth P.
View Online: njit-etd2006-114
(xiv, 107 pages ~ 6.5 MB pdf)
Department: Federated Physics Department of NJIT and Rutgers-Newark
Degree: Doctor of Philosophy
Program: Applied Physics
Document Type: Dissertation
Advisory Committee: Fiory, Anthony (Committee co-chair)
Ravindra, N. M. (Committee co-chair)
Hensel, John Charles (Committee member)
Zhou, Tao (Committee member)
Wu, Zhen (Committee member)
Lepselter, Martin (Committee member)
Date: 2006-08
Keywords: Feasibility
Supperconductivity
Semiconductor
Superlattices
Availability: Unrestricted
Abstract:

The objective of this thesis is to explore superconductivity in semiconductor superlattices of alternating hole and electron layers. The feasibility of superconductivity in semiconductor superlattices is based on a model formulated by Harshrnan and Mills. In this model, a semiconductor superlattice forms the layered electron and hole reservoirs of high transition temperature (high-Tc) superconductors.

A GaAs-A1xGa1-xAs semiconductor structure is proposed which is predicted to superconduct at Tc = 2.0 K and may be analogous to the layered electronic structure of high-Tc superconductors. Formation of an alternating sequence of electron- and hole-populated quantum wells (an electron-hole superlattice) in a modulation-doped GaAs- A1xGa1-xAs superlattice is considered. In this superlattice, the distribution of carriers forms a three-dimensional Wigner lattice where the mean spacing between carriers in the x-y plane is the same as the periodic distance between wells in the superlattice. This geometrical relationship mimics a prominent property of optimally doped high - Tc superconductors.

A Schrodinger-Poisson solver, developed by Snider, is applied to the problem of determining the appropriate semiconductor layers for creating equilibrium electron-hole superlattices in the GaAs-A1xGa1-xAs system. Formation of equilibrium electron-hole superlattices in modulation-doped GaAs-A1xGa1-xAs is studied by numerical simulations. Electron and heavy-hole states are induced by built-in electric fields in the absence of optical pumping, gate electrodes, or electrical contacts. The GaAs-A1xGa1-xAs structure and the feasibility of meeting all the criteria of the Harshman model for superconductivity is studied by self-consistent numerical simulation.

In order to test the existence of superconductivity, the physics of sensor arrays and their ability to create synthetic images of semiconductor structures, is explored. Approximations are considered and practical applications in detecting superconductivity in superlattices are evaluated.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003