Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/449 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Characterization of thermally diffused bordie layers on AISI 1018 steel : residual stresses (by synchrotron radiation) and microhardness
Author: Payne, Joel A.
View Online: njit-etd2006-104
(xiii, 51 pages ~ 5.6 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Master of Science
Program: Materials Science and Engineering
Document Type: Thesis
Advisory Committee: Petrova, Roumiana S. (Committee chair)
Levy, Roland A. (Committee member)
Farrow, Reginald (Committee member)
Date: 2006-08
Keywords: Boronization
Steel
Residual stress measurement
Corrosion resistance
Availability: Unrestricted
Abstract:

Boronization is a thermal diffusion process in which needle like boride layers are formed at the surface of the metallic substrate. The boride coatings formed by the diffusion process have high hardness and strong ware and corrosion resistance. In order for coatings of this nature to be industrially successful, their service life should be long and characterization should be extensive. Measuring the residual stresses of the coatings caters to each of these aspects.

In this study, AISI 1018 steel samples were boronized by a powder-pack process for four hours at 850°C in an argon atmosphere. Characterization techniques included coating thickness, microhardness, residual stresses and elemental distributions. The average thickness of the coating was determined to be 45μm while the average boride needle penetration was found to be 57μm Line-scan energy dispersive x-ray analysis helped verify the presence of the boride layers. It also showed an accumulation of carbon at the boride layer/substrate interface. Microhardness distributions revealed a maximum Knoop and Vickers hardness of 2,050 and 2,150, respectively. Residual stress measurements were obtained from x-ray diffraction data and evaluated using the multiple tilt sin2ψ technique for the iron monoboride layer and the substrate. The residual stresses were found to be compressive for both the iron monoboride layer and the substrate. Their respective values were found to be -237MPa and -l50MPa.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003