Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/776 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: The viability of IS enhanced knowledge sharing in mission-critical command and control centers
Author: Sabet, Sameh A.
View Online: njit-etd2006-083
(xv, 219 pages ~ 12.8 MB pdf)
Department: Department of Information Systems
Degree: Doctor of Philosophy
Program: Information Systems
Document Type: Dissertation
Advisory Committee: Klashner, Robert Michael (Committee chair)
McDonald, James (Committee member)
Mendonca, David (Committee member)
Turoff, Murray (Committee member)
Widmeyer, George Robert (Committee member)
Date: 2006-08
Keywords: Emergent knowledge process
Design theory
Decision support systems
Mission-critical infrastructure
Case study
Availability: Unrestricted
Abstract:

Engineering processes such as the maintenance of mission-critical infrastructures are highly unpredictable processes that are vital for everyday life, as well as for national security goals. These processes are categorized as Emergent Knowledge Processes (EKP), organizational processes that are characterized by a changing set of actors, distributed knowledge bases, and emergent knowledge sharing activities where the process itself has no predetermined structure. The research described here utilizes the telecommunications network fault diagnosis process as a specific example of an EKP. The field site chosen for this research is a global undersea telecommunication network where nodes are staffed by trained personnel responsible for maintaining local equipment using Network Management Systems. The overall network coordination responsibilities are handled by a centralized command and control center, or Network Management Center. A formal case study is performed in this global telecommunications network to evaluate the design of an Alarm Correlation Tool (ACT).

This work defines a design methodology for an Information System (IS) that can support complex engineering diagnosis processes. As such, a Decision Support System design model is used to iterate through a number of design theories that guide design decisions. Utilizing the model iterations, it is found that IS design theories such as Decision Support Systems (DSS), Expert Systems (ES) and Knowledge Management Systems (KMS) design theories, do not produce systems appropriate for supporting complex engineering processes. A design theory for systems that support EKPs is substituted as the project's driving theory during the final iterations of the DSS Design Model. This design theory poses the use of naive users to support the design process as one of its key principles. The EKP design theory principles are evaluated and addressed to provide feedback to this recently introduced Information System Design Theory. The research effort shows that use of the EKP design theory is also insufficient in designing complex engineering systems. As a result, the main contribution of this work is to augment design theory with a methodology that revolves around the analysis of the knowledge management and control environment as a driving force behind IS design.

Finally, the research results show that a model-based knowledge captunng algorithm provides an appropriate vehicle to capture and manipulate experiential engineering knowledge. In addition, it is found that the proposed DSS Design Model assists in the refinement of highly complex system designs. The results also show that the EKP design theory is not sufficient to address all the challenges posed by systems that must support mission-critical infrastructures.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003