Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/767 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Study of propagation and detection methods of terahertz radiation for spectroscopy and imaging
Author: Bandyopadhyay, Aparajita
View Online: njit-etd2006-072
(xv, 119 pages ~ 11.9 MB pdf)
Department: Federated Physics Department of NJIT and Rutgers-Newark
Degree: Doctor of Philosophy
Program: Applied Physics
Document Type: Dissertation
Advisory Committee: Federici, John Francis (Committee chair)
Barat, Robert Benedict (Committee member)
Gary, Dale E. (Committee member)
Harrington, James A. (Committee member)
Mendelsohn, Richard (Committee member)
Swain, P.K. (Committee member)
Date: 2006-05
Keywords: Terahertz
Imaging
Spectroscopy
Scattering studies
THz waveguides
THz filtering
Availability: Unrestricted
Abstract:

The applications of terahertz (THz, 1 THz is 1012 cycles per second or 300 pm in wavelength) radiation are rapidly expanding. In particular, THz imaging is emerging as a powerful technique to spatially map a wide variety of objects with spectral features which are present for many materials in THz region. Objects buried within dielectric structures can also be imaged due to the transparency of most dielectrics in this regime. Unfortunately, the image quality in such applications is inherently influenced by the scattering introduced by the sample inhomogeneities and by the presence of barriers that reduces both the transmitted power and the spatial resolution in particular frequency components. For continued development in THz radiation imaging, a comprehensive understanding of the role of these factors on THz radiation propagation and detection is vital.

This dissertation focuses on the various aspects like scattering, attenuation, frequency filtering and waveguide propagation of THz radiation and its subsequent application to a stand-off THz interferometric imager under development. Using THz Time Domain spectroscopic set-up, the effect of scattering, guided THz propagation with loss and dispersion profile of hollow-core waveguides and various filtering structures are investigated. Interferometric detection scheme and subsequent agent identification is studied in detail using extensive simulation and modeling of various imaging system parameters.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003