Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/750 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: The effects of aging on cardiac mechanics
Author: Lieber, Samuel C.
View Online: njit-etd2006-030
(xvii, 145 pages ~ 11.9 MB pdf)
Department: Department of Mechanical Engineering
Degree: Doctor of Philosophy
Program: Mechanical Engineering
Document Type: Dissertation
Advisory Committee: Aubry, N. (Committee co-chair)
Vatner, S. F. (Committee co-chair)
Geskin, E. S. (Committee member)
Hunter, William Corson (Committee member)
Rao, I. Joga (Committee member)
Singh, Pushpendra (Committee member)
Date: 2006-01
Keywords: Atomic force microscopy
Myocytes
Cell mechanics
Nanotechnology
Biomechanics
Cardiovascular
Availability: Unrestricted
Abstract:

It is well established that the aging heart exhibits left ventricular (LV) diastolic dysfunction and changes in mechanical properties, which have been attributed to alterations in the extracellular matrix (ECM). The investigators tested the hypothesis that the mechanical properties of cardiac myocytes significantly change with aging thereby contributing to the LV diastolic dysfunction. Cellular mechanical properties were determined by indenting cells with an atomic force microscope (AFM). The indentation results were interpreted by modeling the AFM probe as a blunted cone and determining an apparent elastic modulus (B) with classical infinitesimal strain theory (CIST). A commercially available finite element software package (ABAQUS) was used to further explore nano-indentation and the use of CIST to determine material properties. The cellular mechanical property changes, measured in young and old cardiac cells isolated from rats, showed a significant increase (p<0.05) in B with aging. Cellular protein changes were assessed by immunoblot (western) analyses in order to establish if material property changes also occurred with aging. The western results indicate significant (p<0.05) changes in cytoskeletal and mechanotransduction proteins with aging. These data support the concept that the mechanism mediating LV diastolic dysfunction in the aging hearts resides, in part, at the level of the myocyte. The effect of these aging induced cellular changes on global cardiac function will be further explored with instrumentation developed for implantation in an in vivo animal model.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003