Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/748 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Dynamic simulations of particle suspensions subjected to an external electric-field
Author: Jiang, Xianjin
View Online: njit-etd2006-028
(xviii, 117 pages ~ 10.5 MB pdf)
Department: Department of Mechanical Engineering
Degree: Doctor of Philosophy
Program: Mechanical Engineering
Document Type: Dissertation
Advisory Committee: Aubry, N. (Committee co-chair)
Geskin, E. S. (Committee member)
Petropoulos, Peter G. (Committee member)
Singh, Pushpendra (Committee co-chair)
Zhu, Chao (Committee member)
Date: 2006-01
Keywords: Suspension
Electrostatic
Dielectrophoresis
Numberical simulation
Non-uniform electric field
Particle-particle interation
Availability: Unrestricted
Abstract:

A numerical method is performed to study the suspension of polarizable particles in nonconductive solvents subjected to external electric fields. Such particles experience both hydrodynamic and electrostatic interactions. The hydrodynamic force acting on the particles is determined using the Stokesian dynamics method under the assumption that the Reynolds number is much smaller than 1, while the electrostatic force is determined by differentiating the electrostatic energy of the suspension, which is computed from the induced particle dipoles. In addition, the multiple image method is used to compensate for the electrostatic force when two particles are close to each other. Because the electrostatic energy accounts for both far- and near-field interactions, so does the corresponding force.

In this thesis, a monodisperse suspension of hard, dielectric spheres in a Newtonian fluid contained in a channel and subjected to an electrical field due to energized electrodes embedded in the channel walls was considered. The transient particles motion is studied both under static conditions and when a pressure driven flow is applied, and in the case of a uniform and non-uniform electric field. The results show that the electrostatic energy method applied in the past to the case of a uniform electric field only can be extended to the situation where the electric field is non-uniform.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003