Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/410 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Non-invasive monitoring of bone health using ultrasound
Author: Meem, Nashit Jahan
View Online: njit-etd2006-011
(xiii, 52 pages ~ 6.1 MB pdf)
Department: Department of Biomedical Engineering
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Jaffe, Michael (Committee chair)
Roth, Sanford A. (Committee member)
Foulds, Richard A. (Committee member)
Date: 2006-01
Keywords: Bone fractures
Ultrasound
Availability: Unrestricted
Abstract:

Bone fractures are estimated to afflict everyone at least once in his/her lifetime. Monitoring this becomes crucial especially when it comes to athletes in order for them to safely resume their regular activities as soon as possible. Technologies currently employed are either very expensive or use harmful radiation.

Ultrasound can monitor bone fractures in a non-invasive manner, as discussed in United States Patent # 5143069. Three transducers are mounted over the test specimen. A pulse generator excites the transmitting receiver. The second receiver is mounted next to the transmitter and acts as a reference receiver that displays the response across a normal area. The third transducer is mounted across the area suspected to have some defect and acts as the sample receiver to display the response across the discontinuity. Both the received signals are viewed on a dual channel digital oscilloscope, saved onto a diskette and processed for data analysis by quantifying parameters such as flight time and amplitude.

Experiments were conducted on mock bones (wood and metal), cow bone with some meat on it, the human arm and the human tibia. Discontinuity in the first two test specimens resulted in rise in flight time and loss of amplitude. Results from the other three experiments displayed two packets of signals, the first packet corresponding to bone and the second to the soft tissue around it.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003