Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/518 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Scalable wide area ad-hoc networking
Author: Bose, Nithin
View Online: njit-etd2005-146
(xi, 26 pages ~ 1.9 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Computer Engineering
Document Type: Thesis
Advisory Committee: Tekinay, Sirin (Committee chair)
Saraydar, Cem U. (Committee member)
Rojas-Cessa, Roberto (Committee member)
Date: 2005-01
Keywords: Mobile ad-hoc networks
Location awareness
Availability: Unrestricted
Abstract:

The scalability problem of routing algorithms in Mobile Ad-hoc networks (MANET) has conventionally been addressed by introducing hierarchical architectures, clusters, and neighborhood zones. In all of these approaches, some nodes are assigned different routing related roles than others. Examples include cluster heads, virtual backbones and border nodes. The selection of these nodes on a fixed or dynamic basis adds complexity to the routing algorithm, in addition to placing significant demands on mobility and power consumption of these nodes. Furthermore, the scalability achieved with hierarchical architectures or partitions is limited.

This thesis demonstrates that location awareness can greatly aid in MANET routing and proposes an enhancement to location management algorithm used by the Terminodes System. This thesis makes use of geographic packet forwarding, geocasting and virtual home area concepts. It draws from the analogy between ad hoc networks and social networks. The Scalable Wide Area ad hoc network (SWAN), nodes update their location information with a geocast group whose area is given by a well-known function. A source node queries the geocast group of the destination and obtains up to date location information. Then, packets are geographically routed to the destination. The SWAN algorithm also optimizes the control overhead and obtains location information with minimal delay. This thesis also presents the results of our comparative performance study.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003