Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/728 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Study of Si/SiO2 interface passivation and SiO2 reliability on deuterium implanted silicon
Author: Kundu, Tias
View Online: njit-etd2005-129
(xviii, 113 pages ~ 6.9 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Misra, Durgamadhab (Committee chair)
Sosnowski, Marek (Committee member)
Tsybeskov, Leonid (Committee member)
Levy, Roland A. (Committee member)
Fiory, Anthony (Committee member)
Date: 2005-08
Keywords: Deuterium
Passivation
Interface states
Hydrogen
Implantation
Silicon
Availability: Unrestricted
Abstract:

One of the major defects that contribute to the interface states in the silicon band gap is the dangling bond, which degrades performance of MOS devices. Passivation of these bonds with hydrogen had been found to diminish their effect but the improvement degrades the operation due to hot electron effect. Passivation with deuterium annealing has proven to improve the lifetime of the metal oxide semiconductor devices but this technique is not very effective for a multi-level metal-dielectric structure. This work investigates and optimizes incorporation of deuterium by ion implantation into the silicon substrate before the growth of 6.5 nm thin oxides. Different implantation conditions were used for optimization of passivation in the silicon dangling bonds effectively. The interface states density and reliability of deutenum-implanted capacitors was investigated by extensive electrical characterization. Deuterium and hydrogen implanted capacitors showed identical interface passivation effect. Secondary Ion Mass Spectroscopy (SIMS) study supported the electrically measured data and showed the presence of deuterium both at the interface and in the oxide. The optimum passivation was obtained for deuterium implantation at 20keV with dose of lx1014atoms/cm2. For higher dose of implantation, 1x1015/cm2, the reduced passivation and oxide quality has been observed and attributed to implantation induced damage not being completely annealed during oxidation.

Deuterium distribution in silicon/silicon oxide systems was further investigated by subjecting the MOS capacitors to annealing conditions at 600°C and 700°C. Interface quality and oxide reliability degraded in annealed devices with lower dose of implantation, lxl014/cm2 while improved for higher dose of implantation at 1x1015/cm2. The out diffusion of deuterium ions during annealing governed the interface and oxide degradation for lower dose. The improvement in case of higher dose is due to the partial recovery of the damage, which is not completely removed during oxidation. Also, diffusion of deuterium during annealing from damage sites lead to the incorporation of deuterium ions at the interface and in the oxide.

For comparison, hydrogen implantation was carried out at similar conditions. Hydrogen-implanted devices exhibited more charge trapping (increased Stress Induced Leakage Current and Flat Band voltage shift), larger generation of interface states, and a smaller charge to breakdown under electrical stress, compared to the deuterium devices confirming the isotope effect.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003