Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/722 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Algorithms and complexity analyses for some combinational optimization problems
Author: Zhao, Hairong
View Online: njit-etd2005-095
(xiv, 200 pages ~ 9.8 MB pdf)
Department: Department of Computer Science
Degree: Doctor of Philosophy
Program: Computer Science
Document Type: Dissertation
Advisory Committee: Leung, Joseph Y-T. (Committee co-chair)
Czumaj, Artur (Committee co-chair)
Ott, Teunis J. (Committee member)
Rytter, Wojciech (Committee member)
Stein, Clifford (Committee member)
Date: 2005-05
Keywords: Scheduling
Master-slave model
Approximation algorithms
Survivable network design
Planar graphs
Fault tolerant spanner
Availability: Unrestricted
Abstract:

The main focus of this dissertation is on classical combinatorial optimization problems in two important areas: scheduling and network design.

In the area of scheduling, the main interest is in problems in the master-slave model. In this model, each machine is either a master machine or a slave machine. Each job is associated with a preprocessing task, a slave task and a postprocessing task that must be executed in this order. Each slave task has a dedicated slave machine. All the preprocessing and postprocessing tasks share a single master machine or the same set of master machines. A job may also have an arbitrary release time before which the preprocessing task is not available to be processed. The main objective in this dissertation is to minimize the total completion time or the makespan. Both the complexity and algorithmic issues of these problems are considered. It is shown that the problem of minimizing the total completion time is strongly NP-hard even under severe constraints. Various efficient algorithms are designed to minimize the total completion time under various scenarios.

In the area of network design, the survivable network design problems are studied first. The input for this problem is an undirected graph G = (V, E), a non-negative cost for each edge, and a nonnegative connectivity requirement ruv for every (unordered) pair of vertices [upsilon], [nu]. The goal is to find a minimum-cost subgraph in which each pair of vertices u,v is joined by at least ruv edge (vertex)-disjoint paths. A Polynomial Time Approximation Scheme (PTAS) is designed for the problem when the graph is Euclidean and the connectivity requirement of any point is at most 2. PTASs or Quasi-PTASs are also designed for 2-edge-connectivity problem and biconnectivity problem and their variations in unweighted or weighted planar graphs.

Next, the problem of constructing geometric fault-tolerant spanners with low cost and bounded maximum degree is considered. The first result shows that there is a greedy algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds for both the maximum degree and the total cost at the same time. Then an efficient algorithm is developed which finds fault-tolerant spanners with asymptotically optimal bound for the maximum degree and almost optimal bound for the total cost.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003