Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/689 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Fluid-phase thermodynamics from molecular-level properties and interactions based in quantum theory
Author: Arturo, Steven G.
View Online: njit-etd2005-062
(xxiv, 366 pages ~ 26.0 MB pdf)
Department: Department of Chemical Engineering
Degree: Doctor of Philosophy
Program: Chemical Engineering
Document Type: Dissertation
Advisory Committee: Knox, Dana E. (Committee chair)
Barat, Robert Benedict (Committee member)
Bozzelli, Joseph W. (Committee member)
Huang, Michael Chien-Yueh (Committee member)
Krasnoperov, Lev N. (Committee member)
Date: 2005-05
Keywords: Engineering thermodynamics
Computational chemistry
Molecular interactions
Statistical thermodynamics
Atoms in molecular theory
Phase equilibrium
Availability: Unrestricted
Abstract:

A methodology to predict the thermodynamics of macroscopic fluid systems from quantum chemistry and statistical thermodynamics has been developed. This work extends the group-contribution concepts most utilized in chemical engineering. Computational chemistry software is used to define the geometries and electron density profiles of target molecules. Atoms in Molecules theory and associated software packages are used to calculate rigorous properties of the functional groups within molecules of interest. These properties are incorporated into an intermolecular potential energy function which describes interactions between entire molecules as a set of interactions between functional groups. This information is applied to a lattice-fluid model with the capability to predict volumetric properties of pure fluids and vapor/liquid equilibrium properties of mixture systems. This work develops a bridge from chemistry at the molecular level to the statistical mechanics at the macroscopic system level.

The rigorous properties of functional groups lead to the application of firstprinciples mathematical models that qualitatively agree with volumetric properties of pure fluids and predict vapor/liquid equilibrium behavior for near-ambient mixtures of alkanes, alcohols and ethers. The theoretical and computational efforts developed in this work offer engineers the ability to determine molecular-level modeling parameters within engineering models without the use of experiment.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003