Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/488 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Heat transfer model for the ignition of metal powder on a heated filament
Author: Ward, Trent Stanton
View Online: njit-etd2005-060
(xiii, 83 pages ~ 4.5 MB pdf)
Department: Department of Mechanical Engineering
Degree: Master of Science
Program: Mechanical Engineering
Document Type: Thesis
Advisory Committee: Dreyzin, Edward L. (Committee chair)
Dave, Rajesh N. (Committee member)
Schoenitz, Mirko (Committee member)
Date: 2005-05
Keywords: Ignition
Metal powder
Availability: Unrestricted
Abstract:

The thermal processes leading to ignition of metal powders in environments that experience rapid temperature changes are currently poorly understood. In this research, a methodology for studying and quantification of such processes is developed. In the experimental case study, the ignition temperature of Mg powder coated on the surface of an electrically heated filament is detected optically at different heating rates. To interpret the results, a heat transfer model has been developed for a multilayer powder coating on top of an electrically heated filament. The coating is modeled using a hexagonal close packed geometry and the heat transfer equations are derived for one dimensional heat flow. An Arrhenius type expression is used to describe the chemical reaction leading to ignition with the pre-exponent as an adjustable parameter. The contact resistance between each powder layer was derived using the bulk thermal properties of the powder. The thermal diffusivity of the powder was measured using the laser flash diffusivity technique for a powder sample freely loaded in a thin cylindrical cavity made in a heat insulator. The pre-exponent identified by matching the computations with the experimental data is 1 x 1010 kg/m2s. For the Mg powder, it is concluded that the thermal processes leading to ignition, for a range of heating rates between 90 and 16,000 K/s, can be described by a single Arrhenius expression. In general, the developed methodology was validated can now be used for studying ignition of different reactive powders.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003