Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Pitchfork bifurcations of invariant manifolds
Author: Champanerkar, Jyoti
View Online: njit-etd2004-122
(ix, 60 pages ~ 3.7 MB pdf)
Department: Department of Mathematical Sciences
Degree: Doctor of Philosophy
Program: Mathematical Sciences
Document Type: Dissertation
Advisory Committee: Blackmore, Denis L. (Committee chair)
Miura, Robert M. (Committee member)
Mosher, Lee D. (Committee member)
Papageorgiou, Demetrius T. (Committee member)
Bose, Amitabha Koshal (Committee member)
Date: 2004-08
Keywords: Dynamical systems
Pitchfork bifurcation
Bifurcation
Invariant manifolds
Availability: Unrestricted
Abstract:

In a parameter dependent, dynamical system, when the qualitative structure of the solutions changes due to a small change in the parameter, the system is said to have undergone a bifurcation. Bifurcations have been classified on the basis of the topological properties of fixed points and invariant manifolds of dynamical systems. A pitchfork bifurcation in R is said to have occurred when a stable fixed point becomes unstable and two new stable fixed points, separated by the unstable fixed point come into existence.

In this thesis, a pitchfork bifurcation of an (in- 1)-dimensional invariant submani-fold of a dynamical system in Rm is defined analogous to that in R. Sufficient conditions for such a bifurcation to occur are stated and existence of the bifurcated manifolds is shown under the stated hypotheses. The dynamical system is assumed to be a class C1 diffeomorphism or vector field in rtm. The existence of locally attracting invariant manifolds M+ and M- after the bifurcation has taken place, is proved by constructing a diffeomorphism of the unstable manifold M. Techniques used for proving the above mentioned result, involve differential topology and analysis and are adapted from Hartman [18] and Hirsch [19].

The main theorem of the thesis is illustrated by means of a canonical example and applied to a 2-dimensional discrete version of the Lotka-Volterra model, describing dynamics of a predator-prey population. The Lotka-Volterra model is slightly modified to depend on a continuously varying parameter. Significance of a pitchfork bifurcation in the Lotka-Volterra model is discussed with respect to population dynamics. Lastly, implications of the theorem are dicussed from a mathematical point of view.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
Browse ETDs by Adviser
Browse ETDs by Author
Browse ETDs by Program
Browse ETDs by Title
Browse ETDs by Year
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003