Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/640 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Boron and phosphorous implantation into (100) germanium : modeling and investigation of dopant annealing behavior
Author: Suh, Yong Seok
View Online: njit-etd2004-097
(xv, 104 pages ~ 5.1 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Doctor of Philosophy
Program: Materials Science and Engineering
Document Type: Dissertation
Advisory Committee: Levy, Roland A. (Committee chair)
Carroll, Malcolm S. (Committee member)
Sosnowski, Marek (Committee member)
Fiory, Anthony (Committee member)
Sirenko, Andrei (Committee member)
Rafferty, Conor (Committee member)
Date: 2004-05
Keywords: Ion implantation
Pearson distribution
Dopant activation
Diffusion
Germanium
Boron and phosphorous
Availability: Unrestricted
Abstract:

Germanium is increasingly being considered at this time for future silicon compatible optoelectronic and complementary metal oxide semiconductor (CMOS) device application. Germanium implantation will be a critical process for future device fabrication. However, critical properties like Pearson parameters and dopant activation temperatures are not well established. In this study, boron and phosphorus were implanted into (100) germanium with energies ranging from 20 to 320 keV and doses of 5 x 1013 to 5 x 1016 cm-2. The behavior of the boron and phosphorus before and after annealing for 3 hours at 400, 600 or 800°C in ultra high purity nitrogen were characterized using secondary ion mass spectrometry (SIMS), spreading resistance profiling (SRP) measurements, Hall Effect measurement, X-ray diffraction (XRD) measurement, and Rutherford backscattering spectrometry (RB S). A predictive model for the implanted dopant distribution's dependence on energy was developed using the experimentally determined implant moments combined with Pearson distributions and the post-annealing electrical, structural and diffusion behavior was characterized. Results from numeric simulation and analytic calculations using Lindard-Scharff-Schiott (LSS) theory are presented to offer insight into the physics of the pre-annealed implanted dopant distributions.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003