Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/527 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Characterization of aluminum powder ignition
Author: Mohan, Salil
View Online: njit-etd2004-009
(xiii, 56 pages ~ 4.0 MB pdf)
Department: Department of Mechanical Engineering
Degree: Master of Science
Program: Mechanical Engineering
Document Type: Thesis
Advisory Committee: Dreyzin, Edward L. (Committee chair)
Zhu, Chao (Committee member)
Khusid, Boris (Committee member)
Date: 2004-01
Keywords: Aluminum powder ignition
Ignition model
Propulsion fuels
Availability: Unrestricted
Abstract:

Heating rate effect and particle size effect on ignition temperature of Al powder were studied to collect data for development of a possible Al powder ignition model. Aluminum ignition is associated with a highly accelerated burn rate and high combustion enthalpy. A new ignition model, which can adequately interpret these conditions, is needed to develop better propulsion fuels, explosives and incendiaries that use Al as an additive. This experimental program was focused on preparing framework for characterization of ignition kinetics of Al powder by determining the ignition temperature for different, systematically varied, heating rates and particle size. The experimental setup involved igniting Al powder coated on a small length of an electrically heated carbon filament. A three-color pyrometer and a high-speed camera were used in the project to determine the filament surface temperature at the instant of ignition. When using the pyrometer, a sharp rise in a photodiode signal from the powder coating was used to determine the ignition moment. The high-speed camera recorded both the temperature and the ignition moment. Two Al powders with different particle size (Alfa Aesar, Al 10 - 14 μm and Al 3 - 4.5 μm) were investigated. The powders were ignited at three different heating rates. A higher ignition temperature was observed for higher heating rate for both the powders. The powder with larger particles ignited at higher temperature for same heating rate.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003