Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/613 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Modification of biodegradable polyesters with inorganic fillers
Author: Chouzouri, Georgia
View Online: njit-etd2003-038
(xvii, 101 pages ~ 6.3 MB pdf)
Department: Department of Chemical Engineering
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Xanthos, Marino (Committee chair)
Gogos, Costas G. (Committee member)
Huang, Michael Chien-Yueh (Committee member)
Date: 2003-05
Keywords: Biodegradable polymers
Availability: Unrestricted
Abstract:

In attempts to address the growing need of materials with controlled degradation characteristics and good mechanical properties for tissue engineering applications, composites based on biodegradable polymers and a potentially bioactive novel inorganic synthetic filler were produced and characterized. Composites were produced by solution mixing of a commercial polylactic acid, as well as a biodegradable thermoplastic polyester based on butylene adipate/succinate, with synthetic magnesium/aluminum carbonate minerals, known as hydrotalcites. Two types of hydrotalcites, at 30 wto/o filler level, were used: surface coated and uncoated. Composites were also melt-mixed in a twin-screw extruder for comparison.

Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Melt Rheology were used to characterize the unfilled polymers and their composites. Results of long-term degradation data in vitro in a PBS solution are also presented. The polylactic acid composites showed significant differences compared to the unfilled polymers and the copolyester composites. The copolyester composites showed only slight thermal and hydrolytic short and long-term degradation. By contrast, hydrotalcites appear to promote in all cases degradation of the matrix in the polylactic acid composites. During the course of long-term degradation of the polylactic acid and its composites, Elemental Analysis for released Mg and Al ions was performed, as well as measurement of pH changes. Scanning Electron Microscopy was also used to study morphological changes of the composites. Further investigation is needed involving degradation experiments in vivo for the most promising polylactic acid/hydrotalcite composites.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003