Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/567 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Robust and efficient video/image transmission
Author: Zhang, Xi Min
View Online: njit-etd2003-031
(xv, 145 pages ~ 7.6 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Shi, Yun Q. (Committee chair)
Ansari, Nirwan (Committee member)
Manikopoulos, Constantine N. (Committee member)
Sun, Huifang (Committee member)
Vetro, Anthony (Committee member)
Date: 2003-01
Keywords: Interleaving
Scalable coding
Un-equal error protection
Error concealment
Successive packing
Fine-granular scalability
Availability: Unrestricted
Abstract:

The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays.

Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array.

To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003