Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/690 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Quantitative assessment of reflex blood pressure regulation using a dynamic model of the cardiovascular system
Author: Patel, Tanha
View Online: njit-etd2002-068
(xi, 88 pages ~ 3.1 MB pdf)
Department: Biomedical Engineering Committee
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Ritter, Arthur B. (Committee chair)
Kristol, David S. (Committee member)
Engler, Peter (Committee member)
Date: 2002-08
Keywords: Mathematical model
Cardiovascular system
Baroreceptor
Reflex regulation
Availability: Unrestricted
Abstract:

A quantitative understanding of the changes in coronary, pulmonary and systemic hemodynamic variables and their effects on the regulation mechanism is important to the better postoperative management of patients with impaired cardiac function. The arterial baroreflex plays a key role in blood pressure homeostasis, and its impairment may result in exaggerated blood pressure fluctuations and an increased risk of cardiovascular morbid events.

The objective of this work was to construct a mathematical model of the cardiovascular system, which will allow us to simulate the effects of the baroreceptor reflex regulation on sudden changes in blood pressure, caused by sudden changes in one or more hemodynamic parameters. These parameters include heart rate, peripheral resistance and ventricular contractility. A comprehensive model of the baroreflexfeedback mechanism regulating the heart rate, the contractility of the ventricle and the peripheral vascular resistance is presented. The model used is a combination of several models, which have been reported in literature, along with our own modifications. The important feature of the model is that it is dynamic in nature and thus it is helpful in real time analysis. The model is also useful to conceptualize the problem and test relationships, helping researchers frame hypotheses and design experiments.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003