Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/708 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Dry particle coating and granulation in rotating fluidized beds
Author: Kolli, Madhuri
View Online: njit-etd2002-033
(xiii, 110 pages ~ 10.9 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Pfeffer, Robert (Committee chair)
Dave, Rajesh N. (Committee member)
Armenante, Piero M. (Committee member)
Date: 2002-05
Keywords: Granulation
Rotating fluidized beds
Dry particle coating
Availability: Unrestricted
Abstract:

The practicability of using rotating fluidized bed as dry particle coater and granulator is investigated in this study. Dry particle coating, in which fine guest particles are coated onto bigger host particles in the absence of binders or solvents, is studied for various systems of host and guest particles. Coating results are explained by considering the collisions between the host and guest particles and among themselves. Balance between collisional energy and adhesion energy is suggested to be the limiting condition for the adhesion and hence the coating of guest particles onto host particles. It is observed that the experimental and theoretical pressure drops across the fluidized bed differ about 35% on an average. This is assumed to be because of the theoretical approximations and loss of particles during fluidization. Guest particles SiC and alumina, which are fine and cohesive, are seen to agglomerate and form spherical granules during fluidization because of the collisions among the guest particles.

Dry granulation of cohesive powders in rotating fluidized bed is investigated with the aid of pressure swing. In pressure swing granulation, the powder bed is fluidized in one cycle and compacted in the other cycle. This facilitates the formation of spherical granules without any binders. It is observed that denser granules with narrow size distribution are formed as the granulation time is increased. The mechanism and forces involved in making and shaping these granules is investigated. Mathematical modeling of dry granulation in rotating fluidized beds with the aid of population balances is initiated.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003