Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/506 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Modeling and experimental validation of a single-feed semi-batch precipitation process
Author: Uehara-Nagamine, Ernesto
View Online: njit-etd2001-107
(xxiv, 239 pages ~ 47.1 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Doctor of Philosophy
Program: Chemical Engineering
Document Type: Dissertation
Advisory Committee: Armenante, Piero M. (Committee chair)
Baltzis, Basil (Committee member)
Knox, Dana E. (Committee member)
Pfeffer, Robert (Committee member)
Kiang, San (Committee member)
Date: 2001-08
Keywords: crystallization
single-feed
semi-batch
precipitation process micromixing model
Availability: Unrestricted
Abstract:

Crystallization is a widely practiced unit operation throughout the chemical and pharmaceutical process industries. Despite its widespread application, crystallization still suffers a disproportionate number of process difficulties due to the complexity of the steps involved in the process. In particular, the final characteristics of the product are strongly affected by the mixing conditions during the process. The development of a validated modeling approach would be highly valuable for the successful prediction of the crystal characteristics under differing mixing conditions.

In the present work, the single-feed semi-batch precipitation process of barium sulfate in a stirred tank was experimentally studied and numerically predicted using a micromixing model based on CFD. A commercial CFD package (FLUENT) was used to simulate the flow field and predict the energy dissipation rate distributions within the reactor. The precipitation zone originated from the feed point was tracked using a random walk model. Available correlations were used for the calculation of the nucleation and crystal growth rates. The mass transfer coefficient for the crystal growth was assumed to be dependent on both the average crystal size and the local energy dissipation rate. Finally, a micromixing model (E-Model) was incorporated to predict the effects on the final crystal size distribution of a number of operating and geometric variables as well as the effect of vessel scale.

An extensive number of barium sulfate precipitation experiments were conducted to determine the crystal size distribution and validate the proposed model. The effect of the process variables (such as volume ratio, mean initial concentration and stoichiometry ratio), operating conditions (including impeller speed, diameter and off-bottom clearance), and vessel scale on the crystal size distribution were experimentally determined and numerically predicted. In general, very good agreement between experimental data and model predictions was obtained. The model was typically able to capture all of the most important features of the precipitation process. The proposed approach has a significant potential for the prediction of the performance of crystallization processes in industrial applications.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003