Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/489 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: A near-infrared filter system and study of solar umbral dots at 1.6 µm
Author: Wang, Jingshan
View Online: njit-etd2001-090
(xv, 120 pages ~ 16.4 MB pdf)
Department: Federated Physics Department of NJIT and Rutgers-Newark
Degree: Doctor of Philosophy
Program: Applied Physics
Document Type: Dissertation
Advisory Committee: Wang, Haimin (Committee chair)
Ravindra, N. M. (Committee member)
Goode, Philip R. (Committee member)
Gary, Dale E. (Committee member)
Chin, Ken K. (Committee member)
Wu, Zhen (Committee member)
Date: 2001-05
Keywords: Near-Infrared
Solar Umbral Dots
Solar Magnetic Fields
Availability: Unrestricted
Abstract:

The observations of solar magnetic fields are very important because they influence events on the sun. Almost all of magnetographs in the world work in the visible wavelength and they are powerful instruments for measuring strong magnetic fields (above 1000 Gauss) on the sun. To measure the weak solar magnetic fields (below 1000 Gauss), a new filter system (magnetograph) working in near-IR wavelength has been developed in this work. This system includes an interference prefilter (FWHM - 40Å), a liquid crystal magnetic analyzer, a near-IR bireffingent filter (FWHM - 2.5Å), a near-IR Fabry-Perot filter (FWHM - 0.12Å), a near-IR InGaAs camera and an image processing computer. The most important part in this system is the near-IR bireffingent filter. A new method of wavelength tuning is developed with combination of calcite and liquid crystal variable retarder. The liquid crystal variable retarder is the wavelength tunable device in every element of the filter. This is the first original design for a tunable Lyot bireffingent filter in near-IR wavelengths. The optical design and test results of this near-IR bireffingent filter are presented in this dissertation.

The bireffingent index of calcite in the near-IR range, μ = ne - n0 is a critical parameter in the design of the birefringent filter. The values of μ in the literature have been found to be unreliable in the near-IR range. A new method is developed to accurately measure the bireffingent indices from 1.0 to 1.65 μm using sunlight as the light source, a spectrograph as spectrum analyzer and the InGaAs camera as the detector. The temperature coefficient of μat 1.56 μm is also measured. The value of pat 1.56 gm was used in the design of the near-IR birefringent filter and the filter specifications are found to be satisfactory.

The optical components including the four pairs of calcite and the half waveplates have been tested. The results show that the optical components satisfy the specifications of the filter system. The basic theory of a Fabry-Perot filter is presented and the test procedures of the nearIR Fabry-Perot filter, ET70FS-104, are also considered.

In this dissertation, the first observations and studies of umbral dots at 1.56 μm are made. The image data are obtained with a 50Å wide interference filter centered at 1.56μm with the nearinfrared InGaAs camera as the detector. The image data include two sequences of images of a complicated sunspot and a simple sunspot. The dynamic motion properties of umbral dots are studied from the movies of the two sunspots. From the data analysis, the contrast distribution, size distribution and lifetime of umbral dots are presented.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003