Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/478 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Near-field imaging with terahertz pulses
Author: Mitrofanov, Oleg
View Online: njit-etd2001-079
(xviii, 145 pages ~ 15.2 MB pdf)
Department: Federated Physics Department of NJIT and Rutgers-Newark
Degree: Doctor of Philosophy
Program: Applied Physics
Document Type: Dissertation
Advisory Committee: Federici, John Francis (Committee chair)
Johnson, Anthony M. (Committee member)
Lee, Mark R. (Committee member)
Niver, Edip (Committee member)
Shaw, Earl David (Committee member)
Date: 2001-05
Keywords: High Spatial Resolution Imaging
Near-Field Terahertz (THz) Probe
Probe Design
Availability: Unrestricted
Abstract:

High spatial resolution imaging is implemented with a novel collection mode near-field terahertz (THz) probe. Exceptional sensitivity of the probe allows imaging with spatial resolution of few microns using THz pulses with spectral content of 120 to 1500 microns. In the present study, the principle of the probe operation as well as the probe design and characteristics are described.

The probe performance is related to effective detection of radiation coupled into the probe aperture. Propagation of short single-cycle electromagnetic pulses through apertures as small as 1/300 of the wavelength is experimentally and numerically studied. Finite-difference time-domain method is used to model propagation of THz pulses through the probe aperture in order to optimize the probe design. It is shown that the probe sensitivity is significantly improved if the detecting antenna measures electric field coupled through the aperture in the near-field zone rather than in the far-field zone. Effects of temporal and spectral pulse shaping are described by frequency-dependent transmission at the near- or below cutoff regimes of the aperture. Imaging schemes, properties, and artifacts are considered. The technique provides the best to date spatial resolution capabilities in the THz range of the electromagnetic spectrum.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003