Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/447 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Numerical studies of Newtonian and viscoelastic fluids
Author: Alcocer, Felix J.
View Online: njit-etd2001-048
(xiv, 150 pages ~ 4.5 MB pdf)
Department: Department of Mechanical Engineering
Degree: Doctor of Philosophy
Program: Mechanical Engineering
Document Type: Dissertation
Advisory Committee: Singh, Pushpendra (Committee chair)
Chen, Rong-Yaw (Committee member)
Aubry, N. (Committee member)
Narh, Kwabena A. (Committee member)
Tilley, Burt S. (Committee member)
Date: 2001-01
Keywords: Viscoelastic Fluids
Porous Media Flows
Four to One Contraction
Flow Past An Air Foil
Availability: Unrestricted
Abstract:

The direct numerical simulation (DNS) approach is used to understand the flow behavior of Newtonian and viscoelastic fluids in porous materials, four-to-one contraction and the flow of a Newtonian fluid past an airfoil.

In simulations the viscoelastic fluid is modeled by the finitely extensible nonlinear elastic (FENE) dumbbell and Oldroyd-B models. The finite element method (FEM) is used to discretize the flow domain. The DNS results show that the permeability of a periodic porous medium depends on the wavelength used for arranging particles in the direction of flow. Specifically, it is shown that for a given particle size and porosity the permeability varies when the distance between particles in the flow direction is changed. The permeability is locally minimum for kD [approximately equal to] 7.7 and locally maximum for kD [approximately equal to] 5.0; where k is the wave number and D the diameter. A similar behavior holds for a viscoelastic fluid, except that the variation of permeability with kD is larger than for the Newtonian case.

For flow in the four-to-one contraction, it is found that the stress near the 3π/2 comer is singular and that the singularity is stronger than for a Newtonian liquid. In the region away from the walls, the stress varies as r -0.47 and near the walls it varies as r -0.61. Since the singularity is integrable, the flow away from the comer is not effected [sic] when the flow around the comer is resolved by using a radial mesh with sufficient resolution in the tangential direction at the comer.

The DNS approach is also used to demonstrate that the boundary layer separation on the upper surface of the airfoil can be suppressed by placing injection and suction regions on the upper surface. The simulations are performed for Re ≤ [less than or equal too] 500 and angle of attack up to 40°. Analysis of numerical results shows that the pressure contribution to drag decreases when the boundary layer separation is avoided. The viscous contribution to drag, however, increases and thus there is only a negligible decrease in the total drag for Re ≤ [less than or equal too] 500. Another beneficial effect of suction and injection is that the pressure contribution to the lift increases and the stall is avoided.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003