Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/426 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: The influence of high performance matrices on fracture behavior of concrete
Author: Lertwattanaruk, Pusit
View Online: njit-etd2000-047
(xxiii, 260 pages ~ 14.7 MB pdf)
Department: Department of Civil and Environmental Engineering
Degree: Doctor of Philosophy
Program: Civil Engineering
Document Type: Dissertation
Advisory Committee: Wecharatana, Methi (Committee chair)
Dauenheimer, Edward G. (Committee member)
Hsu, C.T. Thomas (Committee member)
Raghu, Dorairaja (Committee member)
Navalurkar, Rajendra (Committee member)
Date: 2000-01
Keywords: Concrete--Additives
Fly ash
Silica fume
Fracture mechanics
Availability: Unrestricted
Abstract:

Modification of cement matrices by the addition of micro particle pozzolanic materials such as silica fume and fly ash is known to improve the strength of concrete, but its contributions to fracture behavior remains unclear. In this study, the influence of replacing cement by silica fume and fly ash on the cement matrix-coarse aggregate interfacial bond, compressive stress-strain behavior and fracture behavior of concrete is investigated.

While the linear elastic fracture mechanics (LEFM) concept is not appropriate for concrete, a nonlinear fracture model based on the load vs. load-line deflection and the load vs. crack-mouthopening displacement (CMOD) responses of the three-point bend tests on notched beams is proposed and validated. Instead of using the LEFM based Two-Parameter Fracture Model that cannot adequately describes fracture processes in concrete, the proposed model is capable of generating the load vs. crack growth curve and the fracture resistance curve, and seems to be more appropriate for studying fracture behavior of concrete.

Incorporating silica fume in concrete mixture is found to have many beneficial effects on cement matrix-coarse aggregate interface, but less likely to improve the toughness of the cement matrix itself The enhanced interfacial bond due to silica fume produces a more homogeneous concrete, which is responsible for the high strength, but more brittle concrete. It is shown that improving interfacial bond has positive effect on the pre-peak fracture behavior of concrete (e.g. the critical energy release rate, GC), but does not necessarily improve the overall fracture behavior (e.g. the fracture energy, GF, and the brittleness).

In this study, coal fly ashes were fractionated into various size ranges by the air classifier method. It is found that replacing cement by very fine fly ash (with average particle size less than 3 microns) can enhance both the toughness of cement matrix and the interfacial bond, which results in high strength and less brittle concrete. The coarser fly ashes, which are porous and less reactive, are shown to enhance the interfacial bond, but produce brittle cement matrix. By reducing the particle size of fly ash, incorporating fly ash in cement matrix can improve both the strength and brittleness of concrete.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003