Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/402 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Time domain measurement of the nonlinear refractive index in optical fibers and semiconductor film
Author: Garcia, Hernando
View Online: njit-etd2000-018
(xv, 135 pages ~ 8.8 MB pdf)
Department: Federated Physics Department of NJIT and Rutgers-Newark
Degree: Doctor of Philosophy
Program: Applied Physics
Document Type: Dissertation
Advisory Committee: Johnson, Anthony M. (Committee chair)
Shaw, Earl David (Committee member)
Federici, John Francis (Committee member)
Knox, Wayne H. (Committee member)
DiGiovanni, David J. (Committee member)
Date: 2000-05
Keywords: Nonlinear refractive index
Optical fibers
Semiconductor films
Optical fiber amplifiers
Availability: Unrestricted
Abstract:

A new technique to measure the nonlinear refractive index n2 in optical fibers and semiconductor films has been developed. It is based on the time delay two-beam coupling of very intense picosecond laser pulses that have been self-phase modulated in the nonlinear optical medium. The two beams are coupled in a slow responding medium that is sensitive to time dependent phase distortions. We determine that the amount of phase distortion experienced by the pulse is proportional to the nonlinear refractive index of the medium, This time domain approach can also be applied to optical fiber amplifiers in the presence of gain and to semiconductor films. Because the technique is base on pure refraction the measurement of n2 is insensitive to nonlinear absorption, thermal effects, and surface roughness. With this technique we have measured n2 in 20-m. length of Silica-glass, Ytterbium-doped, and Erbium-doped optical fibers at 1.064-µm. Also we have measured the change of n2 at 1.064-µm in the presence of a 980-nm pump laser in Yb3+ -doped and Er3+ -doped fibers. Finally we have extended the technique to measure n2 in 2-mm thick samples of GaAs, CdTe and ZnTe semiconductors. In the language of ultrafast spectroscopist, if the best tool to characterize an ultrashort optical pulse is the pulse itself, then the best tool to characterize an optical nonlinear medium is a pulse that has been modified by the medium.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003