Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/761 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Development and characterization of techniques for neuro-imaging registration
Author: Ciulla, Carlo
View Online: njit-etd2000-002
(ix, 59 pages ~ 5.0 MB pdf)
Department: Department of Computer and Information Science
Degree: Master of Science
Program: Information Systems
Document Type: Thesis
Advisory Committee: Deek, Fadi P. (Committee co-chair)
Bly, Benjamin Martin (Committee co-chair)
Turoff, Murray (Committee member)
Date: 2000-05
Keywords: neuro-imaging
fiducial markers
eigenvectors of the inertia matrix
Availability: Unrestricted
Abstract:

Three automated techniques were developed for the alignment of Neuro-Images acquired during distinct scanning periods and their performance were characterized. The techniques are based on the assumption that the human brain is a rigid body and will assume different positions during different scanning periods. One technique uses three fiducial markers, while the other two uses eigenvectors of the inertia matrix of the Neuro-Image, to compute the three angles (pitch, yaw and roll) needed to register the test Neuro-Image to the reference Neuro-Image. A rigid body transformation is computed and applied to the test Neuro-Image such that it results aligned to the reference Neuro-Image. These techniques were tested by applying known rigid body transformations to given Neuro-Images. The transformations were retrieved automatically on the basis of unit vectors or eigenvectors. The results show that the precision of two techniques is dependent on the axial resolution of the Neuro-Images and for one of them also on the imaging modality, while the precision of one technique is also dependent on the interpolation. Such methods can be applied to any Neuro-Imaging modality and have been tested for both fMRI and MRI.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003