Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/994 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Oxidation of dimethyl-ether and ethylene in the atmosphere and combustion environment and thermodynamic studies on hydrofluorocarbons using ab initio calculation methods
Author: Yamada, Takahiro
View Online: njit-etd1999-109
(xxvi, 274 pages ~ 12.4 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Doctor of Philosophy
Program: Environmental Science
Document Type: Dissertation
Advisory Committee: Bozzelli, Joseph W. (Committee chair)
Trattner, Richard B. (Committee member)
Venanzi, Carol A. (Committee member)
Krasnoperov, Lev N. (Committee member)
Hesketh, Robert P. (Committee member)
Date: 1999-01
Keywords: Oxides.
Organic compounds.
Water chemistry.
Thermodynamics.
Availability: Unrestricted
Abstract:

Reaction pathways and kinetics are analyzed on CH3OC·H2 unimolecular decay and on the complete CH3OC·H2 + O2 reaction system using thermodynamic properties (ΔHf°298, S°298, and C(T) 300≤T/K≤1500) derived by two ab initio calculation methods, CBS-q and G2. These are used to determine thermodynamic properties of reactants, intermediate radicals and transition state (TS) compounds. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculate energy dependent rate constants, k(E), and master equation is used to account for collisional stabilization. Comparison of calculated fall-off with experiment indicates that the CBS-q and G2 calculated Ea,rxn for the rate controlling transition state (-scission reaction to C·H2O + C·H2OOH) needs to be lowered by factor of 3.3 kcal/mol and 4.0 kcal/mol respectively in order to match the data of Sehested et al. Experimental results on dimethyl-ether pyrolysis and oxidation reaction systems are compared with a detailed reaction mechanism model. The computer code CHEMKIN II is used for numerical integration. Overall agreement of the model data with experimental data is very good.

Reaction pathways are analyzed and kinetics are determined on formation and reactions of the adduct resulting from OH addition to ethylene using the above ab initio methods. Hydrogen atom tunneling is included by use of Eckart formalism. Rate constants are compared with experimentally determined product branching ratios (C·H2CH2OH stabilization : CH2O + CH3 : CH3CHO + H).

ab initio calculations are performed to estimate thermodynamic properties of nine fluorinated ethane compounds (fluoroethane to hexafluoroethane), eight fluoropropane (1-fluoropropane, 1,1- and 1,2-difluoropropane, 1,1,1- and 1,1,2-trifluoropropane, 1,1,1,2- and 1,1,2,2-tetrafluoropropane and 1,1,2,2-pentafluoropropane), and 2- fluoro,2-methylpropane. Standard entropies and heat capacities are calculated using the rigid-rotor-harmonic-oscillator approximation with direct integration over energy levels of the intramolecular rotation potential energy curve. Enthalpies of formation are estimated using G2MP2 total energies and isodesmic reactions. Thermodynamic properties for fluorinated carbon groups C/C/F/H2, C/C/F2/H, C/C/F3, C/C2/F/H, C/C2/F2 and C/C3/F for fluorinated alkane compounds, CD/F/H and CD/F2 for fluorinated alkene compounds and CT/F for fluorinated alkyne compounds are estimated. Fluorine-fluorine interaction terms F/F, 2F/F, 3F/F, 2F/2F, 3F/2F and 3F/3F for alkane compounds, F//F, 2F//F and 2F/2F for alkene compounds, and F///F for alkyne compound are also estimated.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003