Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/864 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Dual frequency bi-othogonally polarized antennas for GPS applications
Author: Mahale, Anand Arun
View Online: njit-etd1999-079
(x, 60 pages ~ 2.7 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Niver, Edip (Committee chair)
Tekinay, Sirin (Committee member)
Malik, Raashid Ahmed (Committee member)
Uzun, Necdet (Committee member)
Lale, Alatan (Committee member)
Date: 1999-05
Keywords: Antennas (Electronics).
Microwave devices.
Availability: Unrestricted
Abstract:

Dual frequency bi-orthogonally polarized antenna to be used in Global Positioning System applications operating in Li (1575.42 ± 10.23 MHz) and L2 (1227.60 ± 10.23 MHz) Bands has been studied. To ensure compatibility with existing applications, the antenna size is limited in dimensions to 4.120" x 4.680" x 1.250" including the radome. Orthogonally placed two dual frequency probe excited patches were designed using a high dielectric constant substrate (ε r = 9.8 and thickness of 250 mils, Rogers TMM10i material) to obtain vertical and horizontal polarization for each band. The measured performance of this antenna showed good agreement with the specifications required to meet the application needs. As an attractive alternative a stacked dual patch antenna configuration has been suggested and a prototype antenna has also been developed. Using low and high dielectric constants of 2.20 and 9.8 and relative thicknesses of 125 and 250 mils for each layer an orthogonally placed dual patch configuration has been designed, fabricated and tested on a 2 square feet ground plane. Effects of radomes using materials with different permittivities have been studied through numerical simulations and radomes have been fabricated using plastic materials including UMHW, HDPE and Delrin. Numerical simulations have been carried out using IIE3D software package developed by Zeland Software Inc. Antennas that were fabricated based on optimized parameters have further required tuning due to inaccuracies in simulation and material properties. The measurement setup has been enhanced to accommodate axial ratio measurements in polarization pattern characterization by adding a rotary joint to rotate a linearly polarized antenna operating in the receiving mode. The performance characteristics showed that adequate bandwidths and beam widths were obtained and gain of these antennas were measured to be in the order of 3.5 dBi along the main lobe. Further work is continuing to obtain antennas with wider bandwidths using thicker substrates.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003