Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/964 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: FDTD-based full wave co-simulation model for hybrid electromagnetic systems
Author: Li, Tong
View Online: njit-etd1999-023
(xx, 180 pages ~ 9.2 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Zhou, MengChu (Committee co-chair)
Sui, Wenquan (Committee co-chair)
Niver, Edip (Committee member)
Hou, Edwin (Committee member)
Luke, Jonathan H.C. (Committee member)
Date: 1999-05
Keywords: Microwave Devices
Microwave Circuits
Semiconductors
Electromagnetic Fields
Availability: Unrestricted
Abstract:

In high-frequency ranges, the present electronic design automation software has limited capabilities to model electromagnetic (EM) systems where there are strong field effects influencing their characteristics. In this situation, a full-wave simulation tool is desired for the analysis and design of high-speed and non-linear EM systems. It is necessary to explore the interaction between the field and electronic components during a transient process when field effects are more significant. The finite-difference time-domain (FDTD) technique receives growing attention in the area of EM system analysis and simulation due to its simplicity, flexibility and robustness. It is a full-wave simulation method that solves the Maxwell's equations in time domain directly. Decades of research and development and rapid growth in computer capability have built up a firm foundation for FDTD techniques to be applied to many practical problems.

Based on FDTD, this dissertation develops a stable CO-simulation method to perform a full-wave simulation of a hybrid EM system consisting of lumped elements and distributed structures. In this method, FDTD is used to solve the EM field problems associated with distributed structures, and a circuit simulator solves the response of lumped elements. A field-circuit model proposed in the dissertation serves as the interface between the two simulation tools. Compared with previous methods, the FDTD method based on this model is much more flexible and stable for linear and nonlinear lumped elements under both small and large signal conditions. Because of its flexibility and robustness, this model is a promising approach to integrate a field solver and a circuit simulator in the simulations of practical EM systems.

In order to improve the simulation accuracy, some problems related to FDTD simulation are studied. Based on the numerical dispersion in homogeneous media uniform grids, the FDTD numerical reflection and transmission on the boundary of media, which are discritized by a non-uniform grid, are investigated. This investigation provides for the first time an estimation of FDTD numerical error in inhomogeneous media and non-uniform grids. Perfectly matched layer (PML) was previously utilized the homogeneous media or uniform grids. This dissertation extends the PML boundary conditions to handle the inhomogeneous media and non-uniform grid. Techniques extracting S parameters from FDTD simulation are also discussed.

Two and three-dimensional CO-simulation software, written in C++, has be derived, developed and verified in this dissertation. The simulation results agree well with results from other simulation methods, like SPICE, for many test circuits. Taking data sampling and interpolation into account, simulation results generally fit well to measurement and other simulation results for complicated three-dimensional structures.

With further improvements of the FDTD technique and circuit simulation, field-circuit CO-simulation model will widen its application to general EM systems.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003