Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/813 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Characterization of steel corrosion in an aggressive environment
Author: Maeng, Sung Min
View Online: njit-etd1999-003
(x, 44 pages ~ 2.4 MB pdf)
Department: Department of Civil and Environmental Engineering
Degree: Master of Science
Program: Environmental Engineering
Document Type: Thesis
Advisory Committee: Axe, Lisa (Committee chair)
Hsieh, Hsin Neng (Committee chair)
Watts, Daniel (Committee member)
Tyson, Trevor (Committee member)
Date: 1999-08
Keywords: Corrosion and anti corrosives.
Steel, Stainless.
Availability: Unrestricted
Abstract:

As part of the Sustainable Green Manufacturing Program, the corrosion resistance of sputtered tantalum is being studied in order to evaluate it as a replacement coating for electroplated chrome. To accomplish this, studies were conducted to evaluate corrosion properties of the gun barrel steel by employing corrosion rate and bulk measurements including x-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive x-ray spectroscopy (EDX), and x-ray fluorescence (XRF), as well as synchrotron-based x-ray absorption spectroscopy (XAS).

Corrosion behavior of steel immersed in an aggressive environment of 37.8 % hydrochloric acid at room temperature was investigated as a function of time from 10 minutes to 41 hours. The corrosion rate peaked between I and 8 hours of exposure, and revealed a gradual decrease as exposure time increased. SEM/EDX analysis showed that the surface of corroded steel was attacked differently as a function of time, but time had no significant effect on the composition of corrosion product. During the tests, defects on the surface of the polished steel resulted in pitting corrosion. With XRF the bulk composition of the corroded products was found to be consistent with the surface analysis using EDX. XRD analyses of this corrosion product on the surfaces indicated the formation of ßFeOOH (akaganeite) and possibly minor amounts of other oxides. In XAS analysis, the spectra revealed that iron has different coordination environments in steel and the oxide. However, iron in all the corroded specimens appears to have oxygen as the first neighbor. This study provides a baseline for future corrosion research and an exploration of characterization methods for the corroded surface.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003