Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/929 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Mathematical model of human sit-to-stand and stand-to-sit motion analysis
Author: Gandhi, Jayeshkumar
View Online: njit-etd1998-058
(ix, 44 pages ~ 2.7 MB pdf)
Department: Biomedical Engineering Committee
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Lacker, H. Michael (Committee chair)
Kristol, David S. (Committee member)
Engler, Peter (Committee member)
Date: 1998-05
Keywords: Human mechanics.
Kinesiology.
Availability: Unrestricted
Abstract:

In designing a device for an amputee, it is important to find those underlying principles which determine the normal human sit-to-stand task. For this purpose we have developed a mathematical model of human sit-to-stand movement, which it is possible to predict the minimum mechanical energy consumption to move from the sit-to-stand position.

To the best of author's knowledge, this thesis represents the first time that the periodic motion of stand-to-sit and sit-to-stand movements have been mathematically modeled by a simple mechanical system. A complex model, such as the one used by Seireg and Arvikar (1973) [1] that contained 31 muscles per leg, is certainly impressive from a mathematical point of view alone. However, biomechanists should always reduce as much as possible the complexity in their models. The discussions of what the appropriate level of complexity to model, this biomechanical process will probably never end.

Our purpose, for this thesis, is to develop a simple mathematical model of sit-to-stand motion, which can be used to understand the effects of parameter hanges, and to predict the human motion that minimizes energy expenditure. This knowledge can be used to design a mechanical device for this purpose. There are very few papers which explain mechanical and muscular dynamics of rising from a seated position, but unfortunately, no one has successfully constructed a model to solve the motion by forward dynamics.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003