Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1036 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Soot capture in an electrocatalytic reactor
Author: Slanvetpan, Thana
View Online: njit-etd1997-092
(x,47 pages ~ 2.1 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Barat, Robert Benedict (Committee chair)
Stevens, John G. (Committee member)
Pfeffer, Robert (Committee member)
Date: 1997-10
Keywords: Soot--Environmental aspects.
Chemical reactors.
Electrostatic precipitation.
Availability: Unrestricted
Abstract:

A major problem with many soot emission control devices is the fact that they quickly become loaded with soot which must be removed by a regeneration process. A soot capture reactor using a large flow channel was studied in order to eliminate channel plugging and avoid regeneration. Electrostatic precipitation was used in order to enhance particle diffusion to the catalyst wall of the reactor tube. The system effectiveness for soot capture was measured with filter paper sampling of the incoming versus the outgoing flow through the reactor. Soot filter loadings were analyzed by laser optical transmission. From the soot filter paper samplings combined with a visual inspection of the catalyst material surface, the system effectiveness at low voltages was a combination of the electrostatic precipitation and the catalytic oxidation. Reactor outlet soot concentrations showed a significant decrease when high voltage was applied, showing a strong effect of the electrostatic precipitation. However, catalytic oxidation was not apparent at high voltages because a heavy coating of soot was found on the catalyst surface. Computer simulation models using the Chebyshev Polynomial Software Package were developed to approximate the amount of soot deposited in the reactor tube. The simulation predictions are compared to the experimentally observed soot capture results. The results from this simulation confirmed that the external electric field generated by the use of a central wire has a major effect on the soot capture in the reactor tube.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003