Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1041 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Membrane-based reactors for ozonolysis of organic pollutants in aqueous and gaseous streams
Author: Shanbhag, Purushottam V.
View Online: njit-etd1997-020
(xxvii, 246 pages ~ 10.5 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Doctor of Philosophy
Program: Chemical Engineering
Document Type: Dissertation
Advisory Committee: Sirkar, Kamalesh K. (Committee chair)
Lewandowski, Gordon (Committee member)
Baltzis, Basil (Committee member)
Knox, Dana E. (Committee member)
Farrauto, Robert J. (Committee member)
Date: 1997
Keywords: Air--Purification--Ozonization
Membranes (Technology)
Availability: Unrestricted
Abstract:

Many gaseous and aqueous waste streams contain multiple organic pollutants at low concentration levels. It is not economical to recover and reuse these compounds; it would be advantageous to destroy them efficiently within the waste stream. This work employed ozone, a powerful oxidizing agent, in concert with a compact membrane-based phase-contacting device. Three types of membrane devices were studied: two of them (the single-phase membrane ozonator and the two-phase membrane ozonator) treated organic pollutants in wastewater, while the third (the integrated absorption-oxidation membrane ozonator) removed volatile organic compounds (VOCs) from a gaseous waste stream.

In the single-phase membrane ozonator, the polluted wastewater stream was exposed to O3/O2 by means of a nonporous silicone capillary membrane. Experiments conducted to ascertain the effect of long-term exposure of O3 on the membranes measured the permeability of O2/N2 across the membrane before and after exposure to O3; the permeability of O3 across the nonporous membrane was also experimentally measured and found to be four times that of oxygen. The removal of organic pollutants (phenol, acrylonitrile and nitrobenzene, feed concentrations -100ppm) from wastewater was studied experimentally. A mathematical model was proposed; numerical simulations of the model successfully predicted the performance of this membrane reactor. The two-phase membrane ozonator and the integrated absorption-oxidation membrane ozonator used an inert fluorocarbon (FQ medium as a liquid membrane and a reaction medium. Ozone has a very high solubility in this FC phase compared to that in water. The performance of the two-phase membrane ozonator was studied experimentally for the following compounds: phenol, nitrobenzene, acrylonitrile, toluene and trichloroethylene (TCE). A mathematical model was developed; the model predictions were close to the experimentally observed reactor performance.

The two-phase membrane reactor showed higher rates of pollutant degradation than the singlephase membrane ozonator for nitrobenzene as a model pollutant (feed concentration ~120 ppm). Experimentally observed ozone utilization in the two-phase membrane ozonator for nitrobenzene as a model pollutant showed an ozone utilization rate > 15 for a feed concentration of ~120 ppm; and 0.1 for a feed concentration of 1400 ppm. The performance of the integrated absorption- oxidation membrane ozonator was studied for trichloroethylene (TCE) and toluene as representative VOCs. This reactor demonstrated that the two-phase ozonation concept can be successfully extended (with little modification to the membrane reactor) to treat gaseous waste streams with VOCs.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003