Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1021 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: On the optimization problems in multiaccess communication systems
Author: Wang, Gangsheng
View Online: njit-etd1996-103
(xi, 104 pages ~ 3.8 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Ansari, Nirwan (Committee chair)
Blackmore, Denis L. (Committee member)
Hou, Edwin (Committee member)
Siveski, Zoran (Committee member)
Wang, Irving Y. (Committee member)
Date: 1996-01
Keywords: Data transmission systems.
Neural networks (Computer science).
Simulated annealing (Mathematics).
Availability: Unrestricted
Abstract:

In a communication system, the bandwidth is often a primary resource. In order to support concurrent access by numerous users in a network, this finite and expensive resource must be shared among many independent contending users. Multi-access protocols control this access of the resource among users to achieve its efficient utilization, satisfy connectivity requirements and resolve any conflict among the contending users. Many optimization problems arise in designing a multi-access protocol. Among these, there is a class of optimization problems known as NP-complete, and no polynomial algorithm can possibly solve them. Conventional methods may not be efficient arid often produce poor solutions. In this dissertation, we propose a neural network-based algorithm for solving NP-complete problems encountered in multi-access communication systems. Three combinatorial optimization problems have been solved by the proposed algorithms; namely, frame pattern design in integrated TDMA communication networks, optimal broadcast scheduling in multihop packet radio networks, and optimal channel assignment in FDM A mobile communication networks. Numerical studies have shown encouraging results in searching for the global optimal solutions by using this algorithm. The determination of the related parameters regarding convergence and solution quality is investigated in this dissertation. Performance evaluations and comparisons with other algorithms have been performed.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003