Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1121 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Configuring the radial basis function neural network
Author: Sohn, Insoo
View Online: njit-etd1996-084
(xi, 48 pages ~ 1.9 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Ansari, Nirwan (Committee chair)
Shi, Yun Q. (Committee member)
Hou, Edwin (Committee member)
Date: 1996-01
Keywords: Scattering-based clustering algorithm.
Neural networks (Computer science)
Availability: Unrestricted
Abstract:

The most important factor in configuring an optimum radial basis function (RBF) network is the training of neural units in the hidden layer. Many algorithms have been proposed, e.g., competitive learning (CL), to train the hidden units. CL suffers from producing "dead-units." The other major factor Which was ignored in the past is the appropriate selection of the number of neural units in the hidden layer. The frequency sensitive competitive learning (FSCL) algorithm was proposed to alleviate the problem of dead-units, but it does not alleviate the latter problem. The rival penalized competitive learning (RPCL) algorithm is an improved version of the FSCL algorithm, which does solve the latter problem provided that a larger number of initial neural units are assigned. It is, however, very sensitive to the learning rate. This thesis proposes a new algorithm called the scattering-based clustering (SBC) algorithm, in which the FSCL algorithm is first applied to let the neural units converge. Then scatter matrices of the clustered data are used to compute the sphericity for each k, where k is the number of clusters. The optimum number of neural units to be used in the hidden layer is then obtained. The properties of the scatter matrices and sphericity are analytically discussed. A comparative study is done among different learning algorithms on training the RBF network. The result shows that the SBC algorithm outperforms the others.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003