Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1119 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Fuel-rich combustion of ethylene and air in a two stage turbulent flow reactor
Author: Salem, Tara Byrnes
View Online: njit-etd1996-082
(x, 81 pages ~ 2.4 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Barat, Robert Benedict (Committee chair)
Knox, Dana E. (Committee member)
Mitra, S. (Committee member)
Date: 1996-10
Keywords: Ethylene.
Chemical reactors.
Turbulence.
Availability: Unrestricted
Abstract:

This thesis presents experimental and modeling results from the combustion of ethylene and air in a two stage turbulent flow reactor. This work is motivated by the continuing concern over combustion by-products. The first half of the research effort focused on the validation of the reactor as a perfectly stirred reactor and a plug flow reactor (PSR+PFR) sequence. Using four detailed reaction mechanisms, measured concentrations of carbon oxides, oxygen, and light hydrocarbon concentrations were modeled. Within the accuracy of the data, the mechanism of Mao (1995) yielded the best results. However, it was observed that the success of the reactor validation effort is dependent on the chosen mechanism. The second half of this work focused on the fuel-rich combustion of ethylene and air using an on-line microtrap to concentrate the combustion samples. Although the microtrap demonstrated potential, its applicability at high fuel equivalence ratios was hindered by excessive hydrocarbon concentrations. However, benzene, a known precursor to larger and more toxic combustion by-products, was identified and quantified with the microtrap. The benzene data were qualitatively modeled using a mechanism developed by Zhong (1996). Light hydrocarbons and stable combustion species measured in packed columns were accurately modeled with the Mao mechanism.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003