Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1109 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Removal of VOCs from waste gas streams by cyclic membrane separation techniques
Author: Obuskovic, Gordana
View Online: njit-etd1996-072
(xi, 45 pages ~ 1.5 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Sirkar, Kamalesh K. (Committee chair)
Kebbekus, Barbara B. (Committee member)
Luo, Robert G. (Committee member)
Date: 1996-05
Keywords: Volatile organic compounds.
Membrane separation.
Availability: Unrestricted
Abstract:

In this study, new separation techniques called Flow Swing Membrane Absorption Permeation (FSMABP) and Flow Swing Membrane Permeation (FSMP) were used for the removal of the volatile organic compounds (VOCs). In both cases, processes are cyclic in terms of feed flow while desorption of the VOCs is constantly taking place. The transport mechanism in the FSMABP process is selective permeation followed by absorption of the VOCs into the stagnant nonvolatile absorbent liquid on the shell side of the membrane module and then desorption through a similar polymeric membrane. In the FSMP process, VOCs selectively permeate through the membrane into the shell side due to the partial pressure difference across the membrane. Hollow Fiber Modules (HFM) which were used for this experimental work were effective in removing various VOCs from gas streams. High percent removal of VOCs in case of FSMABP and FSMP was achieved at lower feed flow rates and shorter cycle times. Organic contamination in the feed gas stream could be almost totally removed to obtain highly purified treated gas. The advantage of the FSMABP process is that the enrichment of the permeate is much higher compared to the FSMP. Low nitrogen solubility in mineral oil ensures that the permeate is much more concentrated in VOCs, thus facilitating not only removal of organics but also recovery of these commercially valuable solvents. For the same process inlet conditions, lower concentrations of the treated stream were achieved in FSMP. Silicone coated membrane used in this experimental work showed reasonable high selectivity for VOCs over nitrogen.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003