Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1090 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Degradation and breakdown in ultra-thin silicon oxides
Author: Franck, Christopher
View Online: njit-etd1996-053
(xi, 59 pages ~ 2.0 MB pdf)
Department: Department of Physics
Degree: Master of Science
Program: Applied Physics
Document Type: Thesis
Advisory Committee: Farmer, Kenneth Rudolph (Committee chair)
Chin, Ken K. (Committee member)
Ravindra, N. M. (Committee member)
Date: 1996-05
Keywords: Silicon oxide films.
Availability: Unrestricted
Abstract:

Emerging trends in the semiconductor device industry call for detailed knowledge of the properties of devices whose dimensions are small enough to exploit Quantum Mechanical effects. This thesis presents a complete picture of oxide degradation in MOS direct tunnel diodes (t0 <3.4 nm). It is demonstrated that for structures fabricated at different facilities and stressed with either gate or substrate injection, a universal degradation mode is revealed which is manifested as the build up of positive charge in the oxide. The data gathered demonstrates that the positive charging phenomena in sub-3.5 nm oxides is independent of oxide thickness, and is characterized by a voltage threshold and two-regime temperature dependence. Further, the catastrophic failure, or breakdown, of these oxides was studied and the strongest evidence to date is presented which links the positive charging phenomena to the oxide breakdown. This thesis concludes with the presentation of a novel device design which can exploit the properties of degradation and breakdown, in thin oxides, to achieve an EEPROM memory cell of superior endurance.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003