Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1002 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: A controlled release technique using microporous membranes
Author: Farrell, Stephanie
View Online: njit-etd1996-025
(xvi, 192 pages ~ 8.6 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Doctor of Philosophy
Program: Chemical Engineering
Document Type: Dissertation
Advisory Committee: Sirkar, Kamalesh K. (Committee chair)
Baltzis, Basil (Committee member)
Kafkewitz, David (Committee member)
Kristol, David S. (Committee member)
Loney, Norman W. (Committee member)
Date: 1996-10
Keywords: Controlled release preparations
Membrane separation
Availability: Unrestricted
Abstract:

A novel controlled release device based on aqueous-organic partitioning is described. The device comprises a reservoir, bounded by a microporous or porous membrane in the form of a hollow fiber or flat film. The reservoir liquid phase and the pore liquid phase are immiscible. The agent partitions between the phases at the aqueous-organic interface of the reservoir and the pore mouth, and then diffuses through the membrane pore liquid into a surrounding aqueous solution. The partition coefficient significantly influences the rate of release of the agent by reducing the driving force for diffusion across the fluid-filled membrane pore. The performance of the system is evaluated using model agents benzoic acid, caffeine, nicotine and phenylalanine-glycine. Two aqueous-organic configurations were investigated: an agent in an organic reservoir solution with water-filled pores, and an agent in an aqueous reservoir with organic filled pores. Specifically, the model systems included benzoic acid in three reservoir solvents (octanol, decanol, and mineral oil) partitioning into waterfilled pores, an aqueous reservoir of nicotine partitioning into either mineral oil- or octanol-filled pores, and caffeine or phenylalanine-glycine partitioning into octanol-filled pores. The peptide phenylalanine-glycine was used to investigate pH-based controlled release from this type of device. Studies using benzoic acid demonstrate the effectiveness of a thin, nonporous coating on the release rate. When a fast-dissolving dispersion of the agent is present in the reservoir, the period of zero order release is extended; when the dispersion dissolves slowly, the release rate is decreased and the period of zero order release is extended. Simultaneous release of two agents (benzoic acid and nicotine, nicotine and caffeine) from a single reservoir and from two separate reservoirs was achieved. Models are presented for many of these systems. Solutions have been developed to describe the observed release, and dimensional analysis was used to identify important parameters which govern the release rate of the agent from the device. Finally, a new technique is presented for achieving controlled release of liposomes from a membrane-type diffusion based controlled release system.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003