Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1070 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: The study of SiGe-channel heterojunction MOS device
Author: Qiu, Yunchen
View Online: njit-etd1996-020
(xiii, 94 pages ~ 5.4 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Misra, Durgamadhab (Committee chair)
Sohn, Kenneth (Committee member)
Cornely, Roy H. (Committee member)
Date: 1996-05
Keywords: Metal oxide semiconductors--Junctions
Availability: Unrestricted
Abstract:

The advances in the growth of pseudomorphic silicon-germanium epitaxial layer combined with the strong need for high-speed CMOS VLSI circuit have led to increased interest in silicon-based heterojunction MOSFET's transistors. The high-performance heterostructure SiGe MOSFET exhibits higher channel mobility than its bulk Si counterpart. The most critical and challenging process for fabricating a SiGe MOSFET device is that for making a gate oxide with sufficient quality for useful conductivity modulation. PECVD methods was employed to deposit the gate oxide and C-V method was used to investigate the electrical characteristics of the film. For PECVD gate oxide, a film refractive index 1.47 were obtained using the deposition rate 125Å/min with a break down voltage 4-5 MV/cm, which deposition conditions are optimized as flow rate of DES (12sccm), N20(172sccm), Helium(850sccm), temperature 300°C, power density 0.09W/cm2. The total interface trap and fixed charge density Nt=5.4x1012 cm-2 and flatband voltage Vfb=-16V for non-armealing MOS capacitor and the total effect of interface trap and fixed charge density 6.4x1011 cm-2 and flatband voltage 4V were obtained at the oxide thickness dox=1160Å using annealing at 650°C for 30 minutes in the ambient of nitrogen. LPCVD silicon dioxide film was obtained at the deposition rate 14.5 Å/min and refractive index 1.46 while Nt=3.9x1012cm-2 and Vfb=-8V for nonannealing and Nt=4.9x1011 cm-2 and Vfb=-2V for 650°C annealed MOS capacitor.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003