Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1580/ in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Removal of VOCs from waste gas streams by a hollow fiber permeator
Author: Malik, Varinder Pal
View Online: njit-etd1995-096
(xvi, 114 pages ~ 3.6 MB pdf)
Department: Department of Chemical Engineering, Chemistry and Environmental Science
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Sirkar, Kamalesh K. (Committee chair)
Shaw, Henry (Committee member)
Petrides, Demetri P. (Committee member)
Date: 1995-10
Keywords: Volatile organic compounds.
Membrane separation.
Availability: Unrestricted
Abstract:

Removal of various VOCs from air/nitrogen feed streams using a novel hollow fiber membrane was studied. Hollow Fiber Module (HFM) used had composite silicone membranes wherein an ultrathin (~ 1μm), nonporous silicone rubber membrane layer had been plasma polymerized on a porous (porosity: 0.4) polypropylene substrate. VOCs studied were toluene, methanol, acetone, methylene chloride and hexane. Primary focus was on single VOCs, although separation of VOC mixtures was also briefly studied. HFM was found to be extremely effective in removing various VOCs from feed streams. Removal of 90-99 % of various VOCs was achieved at low feed flow rates and high inlet VOC concentrations. The membrane exhibited high selectivities for VOC over nitrogen/air. The VOC permeance was found to be dependent on the VOC concentration. Tube-side feed and shell-side feed modes of operation were analyzed for methanol and toluene; it was observed that tube-side feed mode gives better VOC separations. A mathematical model was developed and numerically simulated to explain the observed VOC (toluene and methanol) separation behavior of HFM. The model was able to explain the experimental results reasonably well. Removal of VOC (acetone) from a high pressure gas was also studied. HFM was also successful in separating a mixture of VOCs (toluene, methanol, acetone) from a nitrogen feed stream.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003