Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1191 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Measurement of the reaction to stress and meditation using brain wave coherence and heart rate variability
Author: King, Christopher B.
View Online: njit-etd1995-088
(xiii, 98 pages ~ 3.8 MB pdf)
Department: Biomedical Engineering Committee
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Reisman, Stanley S. (Committee chair)
Kristol, David S. (Committee member)
Findley, Thomas W. (Committee member)
Date: 1995-01
Keywords: Transcendental Meditation.
Stress (Physiology).
Heart beat--Measurement.
Heart rate variability.
Electroencephalography.
Availability: Unrestricted
Abstract:

Measurement of physiological parameters associated with the stress response and the relaxation response caused by various forms of meditation can provide valuable information about the reaction of the body to the mind and to the external environment.

This study used two different techniques to evaluate physiological parameters. The first part examined the meditation response by recording the EEG and calculating the coherence between brain waves originating from different parts of the brain. It was found that high levels of coherence in the alpha portion of the EEG frequency band coincided with a restful state associated with the relaxation response. In an effort to measure the autonomic nervous system reaction to relaxation using heart rate variability analysis, it was found necessary to separate sympathetic from parasympathetic influences. This led to measuring the stress reaction in order to find the sympathetic contribution.

The stress reaction was measured by acquiring skin temperature data and heart rate data, and comparing the changes in skin temperature to changes in heart rate variability calculated using time frequency analysis. Skin temperature was found to react gradually to sympathetic changes. A strong mental component was found to influence the stress reaction that was being measured.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003