Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1173 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Wear of polyethylene and hylamer on cobalt-chromium : a knee simulator study
Author: Canonaco, Alessandro F.
View Online: njit-etd1995-070
(viii, 39 pages ~ 2.1 MB pdf)
Department: Biomedical Engineering Committee
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Mayott, Clarence W. (Committee chair)
Pappas, Michael (Committee member)
Makris, Georghios (Committee member)
Date: 1995-01
Keywords: Artificial knee.
Implants, Artificial--Materials.
Polyethylene.
Mechanical wear--Testing.
Cobalt alloys.
Chromium alloys.
Availability: Unrestricted
Abstract:

Two tests were conducted to examine the wear characteristics of tibial bearings used in total knee replacement systems. Each test consisted of six A/P Glide Tibial Bearings each having a conical control arm. The plastic portion of the conical bearings were all made of UHMWPe. Each of these bearing systems was mounted onto a Co-Cr alloy tibial platform and Co-Cr alloy LCS (low contact stress) femoral component . These test samples were mounted onto the New Jersey Mark III Knee Simulator System. The simulator was configured to produce flexion and axial rotation to simulates normal gait. Each test ran at 2 Hz with saline being sprayed between articulating surfaces. Simulation I tested six UHMWPe bearings with an off-center load applied to the bearing by the femoral component 25° from the articulating surface segment tangent. Simulation II tested three Hylamer® and three UHMWPe bearings without an off-center load.

Hylamer®'s volumetric loss and wear rate were found to be higher then UHMWPe. Hylamer® had a maximum volumetric loss of 12.86 mm3 and a maximum wear rate of 6.19 mm3/million cycles while UHMWPe had a maximum volumetric loss of 3.57 mm3 and a maximum wear rate of 1.67 mm3/million cycles. Hylamer increase in crystallinity slightly increases its yield strength and ultimate tensile strength. However, by increasing the crystallinity, stiffness is also increased. This increase in stiffness increases the contact stress which in turn increases the wear. Although a slight increase in strength is gained when using Hylamer®, wear resistance, an important characteristic for total knee replacement systems, is reduced.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003