Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1118 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Electrical characteristics of novel heterojunction diodes of thin relaxation semiconductors/p-Si/
Author: Lee, Hyung Joo
View Online: njit-etd1995-055
(xiv, 102 pages ~ 3.9 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Sohn, Kenneth (Committee chair)
Cornely, Roy H. (Committee member)
Kosonocky, Walter F. (Committee member)
Grebel, Haim (Committee member)
Ravindra, N. M. (Committee member)
Date: 1995-01
Keywords: Diodes, Semiconductor--Electric properties.
Thin films--Electric properties.
Availability: Unrestricted
Abstract:

The relaxation semiconductor is defined as one in which the dielectric relaxation time (τd;resistivity times permittivity) is greater than lifetime (τo). Non-hydrogenated amorphous Silicon Carbide (SiC) and KrF excimer laser induced disordered Si were used for the relaxation semiconductors. Both semiconductors have high resistivity, wide energy gap, and numerous defects. A novel diode, consisting of those semiconductors on p-type crystalline Silicon (c-Si), was fabricated. In the diode structure, an injecting contact was made on the relaxation material and a Schottky barrier contact was made on the c-Si.

Electrical characteristics of both diodes were found to have interesting effects: negative capacitance, negative resistance, space charge limited current, and bistable switching with long term memory. During the C-V measurement of a disordered Si/c-Si heterojunction diode, for the first time, a constant negative capacitance of 1520pF was observed from - 10v to 10v at 1MHz. This negative capacitance was considered as an inductive behavior. The measured inductance value was approximately 16.7 μH at 1MHz. The inductance was proportional to 1/ω2 in the variation of frequency and 14.74mH at 30KHz as measured by a LCR analyzer. In an a-SiC/c-Si heterojunction diode, a negative capacitance was also observed in both biases. The inductance value was 36μH above 3.5v and below 3.5v at 1MHz. The shape of negative capacitance between - 3.5v and 3.5v was parabolic and the inductance, near zero bias, was 30μH. The inductance was almost constant between 1MHz and 30KHz.

An inductive part of the heterojunction diode was derived theoretically using the relaxation theory and Shockley theory. The inductance was either constant if ωτd < 1, or proportional to 1/ω2 ωτd > 1. Moreover, a circuit model of the heterojunction diode was also developed. The negative capacitance, Ctest showed |Ctest| = 1/ω2 Ltest at the circuit model. Computer simulation also showed negative capacitance similar to that of the experiment.

It was proposed that conductivity modulation, by carrier injection in a thin relaxation semiconductor, causes an inductive behavior, and the relaxation would be more pronounced by the carrier screening of impurities. The novel heterojunction diode may replace a physical inductor in microelectronics.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003