Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1168 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Low pressure chemical vapor deposition of copper films from CU(I)(HFAC)(TMVS)
Author: King, Wei-Shang
View Online: njit-etd1995-054
(xii, 61 pages ~ 2.4 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Master of Science
Program: Engineering Science
Document Type: Thesis
Advisory Committee: Levy, Roland A. (Committee chair)
Grow, James M. (Committee member)
Kristol, David S. (Committee member)
Date: 1995-01
Keywords: Chemical vapor deposition.
Metallic films.
Copper plating.
Availability: Unrestricted
Abstract:

Recently, copper has been found as a possible substitute for Al alloys because of its low resistivity (1.67 μΩ • cm) and potentially improved resistance to electromigration. Conventional physical vapor deposition (PVD) method do not provide the conformal deposition profile for the high density integrated circuit, therefore, chemical vapor deposition (CVD) has become the most promising method for the resulting conformal profile.

In this work, a cold wall, single wafer, CVD tungsten reactor was used for the deposition of copper with Cu(I)(hfac)(tmvs). Film growth rates were between 100 to 800 A/min depending on processing conditions, and an Arrhenius type activation energy of 16.1 kcal/mole was obtained in the temperature region of 150-180 °C. No significant amount of contamination is detected in the copper films, and the resistivity of the films was routinely near 2.2 μΩ • cm when the film was 5000 A or more. The surface roughness of the films increased with increasing film thickness, and the crystal orientation was found as a function of growth rate. These obtained results demonstrated the feasibility of using Cu(I)(hfac)(tmvs) in the synthesis of high purity copper films using liquid injection by LPCVD.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003