Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1116 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Composite beam analogy fracture model (CBAFM) : a non-linear fracture mechanics model for concrete
Author: Haque, Mohammed Enamul
View Online: njit-etd1995-052
(xv, 98 pages ~ 3.1 MB pdf)
Department: Department of Civil and Environmental Engineering
Degree: Doctor of Philosophy
Program: Civil Engineering
Document Type: Dissertation
Advisory Committee: Ansari, Farhad (Committee chair)
Dauenheimer, Edward G. (Committee member)
Hsu, C.T. Thomas (Committee member)
Schuring, John R. (Committee member)
Maher, Ali (Committee member)
Date: 1995-05
Keywords: Fracture mechanics--Measurement.
Concrete beams--Testing--Data processing.
Availability: Unrestricted
Abstract:

The main objective of this dissertation is to develop a simple non-linear fracture mechanics model for the determination of fracture mechanics parameters for concrete, such as fracture process zone length (rp), critical fracture energy release rate (Gic), critical stress intensity factor (KO and fracture energy (GF). The fracture process zone (FPZ) is modeled as a damaged non-elastic cohesive band where the extent of damage due to microcracking varies from no damage at the boundary of FPZ to complete crack surface separation at the notch or macro-crack tip. The proposed method can predict theoretically both the pre-peak and post-peak load versus crack mouth opening displacement (P-CMOD) and load versus load point deflection (P-δ) behaviors for a three point bend (3-PB) single-edge notch (SEN) beam. To apply this method, one only needs to measure peak load (Pu) and corresponding crack mouth opening displacement (CMODu) of a 3-PB SEN beam, and cylinder compressive strength. This method does not require post-peak load-deflection or CMOD data. Furthermore, it does not require information as to the unloading characteristics of a beam. The testing machine need not be very stiff. This makes the testing procedure greatly simplified and makes it suitable not only for the testing laboratory but also for work sites where a closed-loop testing machine is not available. A microcomputer based simple numerical model is also developed based on the proposed fracture model. This model is verified by comparison with numerous experimental results as well as with other available methods from the literature.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003