Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1108 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Theory, design and applications of linear transforms for information transmission
Author: Benyassine, Adil
View Online: njit-etd1995-041
(xiii, 110 pages ~ 3.8 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Akansu, Ali N. (Committee chair)
Haimovich, Alexander (Committee member)
Siveski, Zoran (Committee member)
Karvelas, Dionissios (Committee member)
Hsing, To Russell (Committee member)
Date: 1995-01
Keywords: Signal theory (Telecommunication)
Data transmission systems.
Availability: Unrestricted
Abstract:

The aim of this dissertation is to study the common features of block transforms, subband filter banks, and wavelets, and demonstrate how discrete uncertainty can be applied to evaluate these different decomposition techniques. In particular, we derive an uncertainty bound for discrete-time functions. It is shown that this bound is the same as that for continuous-time functions, if the discrete-time functions have a certain degree of regularity.

This dissertation also deals with spectral modeling in filter banks. It is shown, both theoretically and experimentally, that subspectral modeling is superior to full spectrum modeling if performed before the rate change. The price paid for this performance improvement is an increase of computations. A few different signal sources were considered in this study. It is shown that the performances of AR and ARMA modeling techniques are comparable in subspectral modeling. The first is desired because of its simplicity. As an application of AR modeling, a coding algorithm of speech, namely CELP embedded in a filter bank structure was also studied. We found that there were no improvements of subband CELP technique over the full band one. The theoretical reasonings of the experimental results are also given.

This dissertation also addresses the problems of what type of transform to be used and to what extent an image should be decomposed. To this aim, an objective and subjective evaluations of different transform bases were done.

We propose a smart algorithm for the decomposition of a channel into its sub-channels in the discrete multitone communications. This algorithm evaluates the unevenness and energy distribution of the channel spectrum in order to get its Variable adaptive partitioning. It is shown that the proposed algorithm leads to a near optimal performance of the discrete multitone transceiver. This flexible splitting of the channel suffers less from the aliasing problem that exists in blind decompositions using fixed transforms. This dissertation extends the discrete multitone to the flexible multiband concept which brings significant performance improvements for digital communications.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003