Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1083 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Adaptive nonlinear control using fuzzy logic and neural networks
Author: Chang, Shu-Chieh
View Online: njit-etd1994-036
(xiii, [i], 106 pages ~ 4.4 MB pdf)
Department: Department of Mechanical and Industrial Engineering
Degree: Doctor of Philosophy
Program: Mechanical Engineering
Document Type: Dissertation
Advisory Committee: Dave, Rajesh N. (Committee chair)
Ansari, Nirwan (Committee member)
Chen, Rong-Yaw (Committee member)
Ji, Zhiming (Committee member)
Levy, Nouri (Committee member)
Date: 1994-05
Keywords: Adaptive control systems.
Neural networks (Computer science)
Fuzzy logic.
Availability: Unrestricted
Abstract:

The problem of adaptive nonlinear control, i.e. the control of nonlinear dynamic systems with unknown parameters, is considered. Current techniques usually assume that either the control system is linearizable or the type of nonlinearity is known. This results in poor control quality for many practical problems. Moreover, the control system design becomes too complex for a practicing engineer. The objective of this thesis is to provide a practical, systematic approach for solving the problem of identification and control of nonlinear systems with unknown parameters, when the explicit linear parametrization is either unknown or impossible.

Fuzzy logic (FL) and neural networks (NNs) have proven to be the tools for universal approximation, and hence are considered. However, FL requires expert knowledge and there is a lack of systematic procedures to design NNs for control. A hybrid technique, called fuzzy logic adaptive network (FLAN), which combines the structure of an FL controller with the learning aspects of the NNs is developed. FLAN is designed such that it is capable of both structure learning and parameter learning. Gradient descent based technique is utilized for the parameter learning in FLAN, and it is tested through a variety of simulated experiments in identification and control of nonlinear systems. The results indicate the success of FLAN in terms of accuracy of estimation, speed of convergence, insensitivity against a range of initial learning rates, robustness against sudden changes in the input as well as noise in the training data. The performance of FLAN is also compared with the techniques based on FL and NNs, as well as several hybrid techniques.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003