Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1080 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Behavior of concrete and slender reinforced concrete columns under cyclic axial compression with bidirectional eccentricities
Author: Bahn, Byong Youl
View Online: njit-etd1994-032
(xvi, 151 pages ~ 6.9 MB pdf)
Department: Department of Civil and Environmental Engineering
Degree: Doctor of Philosophy
Program: Civil Engineering
Document Type: Dissertation
Advisory Committee: Hsu, C.T. Thomas (Committee chair)
Ansari, Farhad (Committee member)
Wecharatana, Methi (Committee member)
Schuring, John R. (Committee member)
Sun, Benedict C. (Committee member)
Date: 1994-01
Keywords: Reinforced concrete.
Columns, Concrete.
Axial loads.
Eccentric loads.
Strains and stresses.
Availability: Unrestricted
Abstract:

A rational analysis of reinforced concrete (R/C) structures requires satisfactory modeling of the behavior of concrete under general loading patterns. The behavioral characteristics of concrete dominantly depends upon its load history. For the study of concrete behavior, parametric study and experimental investigation into the behavior of concrete under load history of random cycles are performed. Through parametric study, the applicability of the previous concrete models is examined and a physically motivated modeling for the cyclic stress-strain relationships is proposed. The present modeling of concrete under general cyclic loading is initiated to provide substantial applicability, flexibility of mathematical expressions and furthermore to describe the behavior of random cycles. For the experimental study of concrete subjected to cyclic axial compressions, tests of 3 in. by 6 in. concrete cylinders are conducted under four different loading regimes to determine the major experimental parameters for the proposed analytical expressions. The model developed is based on the results of parametric study and experimental data obtained for the present study. The validity of the proposed general cyclic model is confirmed through a comparison of the experimental results and simulated behavior of the model. Furthermore, the analytical model proposed has been idealized and incorporated into the procedures in analyzing RIC columns.

The behavior of R/C columns having various properties and subjected to a variety of loading conditions have been the topics of considerable investigation. Of particular significance in the area of unexplored problems is the behavior of R/C columns under cyclic compressive load. It should be noted that cyclic loads with bidirectional eccentricities considered are in the longitudinal direction, and not in the transverse direction, with respect to the column axis. For the experimental investigation, tests of four foot long columns are conducted under stroke control to achieve both ascending and descending branches of the load-deformation curves.

Analysis of RC columns subjected to cyclic axial compressions with bidirectional eccentricities should be approached from the standpoint of a three dimensional problem. A numerical procedure based on extended finite segment method is proposed here to predict the ultimate load, deflections and moment-curvature of experimental results. It is found that the proposed numerical analysis can reasonably simulate the loading and unloading behavior of R/C columns under combined biaxial bending moments and axial compressions.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003