Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1079 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Motion estimation using optical flow field
Author: Pan, Jingning
View Online: njit-etd1994-031
(xiv, 153 pages ~ 7.0 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Shi, Yun Q. (Committee chair)
Frank, Joseph (Committee member)
Hou, Edwin (Committee member)
Shih, Frank Y. (Committee member)
Shu, C.Q. (Committee member)
Date: 1994-05
Keywords: Motion--Analysis
Robot vision.
Availability: Unrestricted
Abstract:

Over the last decade, many low-level vision algorithms have been devised for extracting depth from intensity images. Most of them are based on motion of the rigid observer. Translation and rotation are constants with respect to space coordinates. When multi-objects move and/or the objects change shape, the algorithms cannot be used.

In this dissertation, we develop a new robust framework for the determination of dense 3-D position and motion fields from a stereo image sequence. The framework is based on unified optical flow field (UOFF). In the UOFF approach, a four frame mode is used to compute six dense 3-D position and velocity fields. Their accuracy depends on the accuracy of optical flow field computation. The approach can estimate rigid and/or nonrigid motion as well as observer and/or object(s) motion.

Here, a novel approach to optical flow field computation is developed. The approach is named as correlation-feedback approach. It has three different features from any other existing approaches. They are feedback, rubber window, and special refinement. With those three features, error is reduced, boundary is conserved, subpixel estimation accuracy is increased, and the system is robust. Convergence of the algorithm is proved in general.

Since the UOFF is based on each pixel, it is sensitive to noise or uncertainty at each pixel. In order to improve its performance, we applied two Kalman filters. Our analysis indicates that different image areas need different convergence rates, for instance. the areas along boundaries have faster convergence rate than an interior area. The first Kalman filter is developed to conserve moving boundary in optical How determination by applying needed nonhomogeneous iterations. The second Kalman filter is devised to compute 3-D motion and structure based on a stereo image sequence. Since multi-object motion is allowed, newly visible areas may be exposed in images. How to detect and handle the newly visible areas is addressed. The system and measurement noise covariance matrices, Q and R, in the two Kalman filters are analyzed in detail. Numerous experiments demonstrate the efficiency of our approach.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003